메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Kyung-Jun Lee (Seoul National University) May Jorella S. Lazaro (Seoul National University) Chan Hyeok Yun (Seoul National University) Sungho Kim (Seoul National University) Dounggun Park (Seoul National University) Myung Hwan Yun (Seoul National University)
저널정보
한국HCI학회 한국HCI학회 학술대회 PROCEEDINGS OF HCI KOREA 2020 학술대회 발표 논문집
발행연도
2020.2
수록면
157 - 162 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In developing or improving a product, gasping context of use is one of the first and important tasks. Accordingly increasing personal mobility accident rates, this study introduces Focused-Day Reconstruction Method (F-DRM) to gather unsafety episode of electric kick scooter users and extract risk factors from those episodes. The proposed F-DRM consist of episode description, perceived dangerous level, risk productenvironmental factor, and so on. 27 participants were recruited and reported 20-40 episodes per person in three weeks. General description of FDRM results is reported, and pair of product factors and environmental factors are clustered for extracting context of risky episodes. Extracting high-rank risk factor pairs, the factor pairs were divided into three clusters through K-means clustering. ANOVA shows significant differences among the clusters based on perceived dangerous level and frequent of factor pairs. In riskiest cluster contains pairs of ‘Wheel’-‘Obstacle’, ‘Wheel’-‘Road surface’, ‘Wheel’-‘Road type’, and ‘Brake’-‘Road type’. These factors are interpreted by detail risk factors to grasp context of risky episode. From the proposed F-DRM, risk factors derived out of the risky episodes are discovered. These results are expected to help further establish experiments to improve the current electric kick scooter design.

목차

Abstract
1. Introduction
2. Methodology
3. Results
4. Discussion
5. Conclusion
Reference

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-004-001167933