메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
김태경 (전남과학대학 지리정보토목과) 이경훈 (전남대학교 건설지구환경공학부 토목공학전공) 선병진 (해동건설[주]) 최천호 (순천대학교 시설과)
저널정보
대한상하수도학회 상하수도학회지 상하수도학회지 제21권 제4호
발행연도
2007.1
수록면
421 - 428 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Many engineering problems on the pipeline flow use continuity, energy, friction loss head equation. To calculate friction loss head in a pipeline, Darcy-Weisbach and many average velocity equations can be used and Hazen-Williams equation is used frequently in the pipe network for the water supply systems. Darcy-Weisbach equation is a general one acquired from applying Bernoulli's equation in the pipeline flow and Hazen-Williams equation is a experimental one in case that pipe velocity is below 3m/sec and pipe diameter is over 50mm. In this study, comparing Darcy-Weisbach with Hazen-Williams equation, relation f and C that are expressed as roughness coefficients of those equations is explained. Next, head losses calculated from using those equations are compared and those are applied in realistic pipelines. Comparing f with C, the f is decreasing linearly according to increase of the Reynolds number Re and increasing in case the C is decreasing. additionally, the C is increasing up to a point and then is decreasing according to increase of the Re. Next, the C is increasing and Re's range for increase of the C lengthens in case of decreasing of the relative roughness ${\varepsilon}/d$. Comparing head losses acquired from the two equations, head loss appears large in case that the C is decreasing and the ${\varepsilon}/d$ is increasing. additionally, Head loss calculated by the Darcy-Weisbach equation varies larger than one by Hazen-Williams equation in regard of the Re. Next, change aspect of head loss acquired by the C is distinguished more clearly than the one by the ${\varepsilon}/d$.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0