메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Kim, Jin-Hong (Advanced Radiation Research Institute, Korea Atomic Energy Research Institute) Kim, Jae-Sung (Advanced Radiation Research Institute, Korea Atomic Energy Research Institute) An, Byung-Chull (Advanced Radiation Research Institute, Korea Atomic Energy Research Institute) Chung, Byung-Yeoup (Advanced Radiation Research Institute, Korea Atomic Energy Research Institute)
저널정보
한국식물학회 식물학회지 식물학회지 제49권 제5호
발행연도
2006.1
수록면
353 - 357 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
We studied the radiation-induced stress resistance in red pepper leaves under conditions of low-temperature photoinhibition or artificially induced photo-oxidative stress. Plants irradiated with 4, 8, or 16-Gy gamma rays were more resistant to both stress factors than were the controls. However, exposure to a low temperature for 12 h with illumination or photo-oxidative treatment for 1 h differentially affected the irradiated leaves, although they had similar stress intensities as defined by their maximal photochemical efficiencies (Fv/Fm). Decreases in Fv/Fm induced by the two stress factors were instead alleviated, dose-dependently, by as much as 22 to 41% (low temperature) or 14 to 29% (photo-oxidation) in the irradiated groups. In contrast, non-photochemical quenching (NPQ) and the de-epoxidation state of xanthophyll cycle pigments could not be correlated with this enhanced stress resistance in the irradiated groups. These results suggest that the adaptive response of plants exposed to gamma radiation is more effective in protecting against low-temperature photoinhibition than against photo-oxidative stress. We also discuss here the involvement of antioxidative defense systems for increased resistance against low-temperature photoinhibition in irradiated red pepper.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0