메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Kim, Doo-Hyun (Department of Safety Engineering, Chungbuk National University) Lee, Jong-Ho (Department of Safety Engineering, Chungbuk National University) Kim, Sung-Chul (Department of Safety Engineering, Chungbuk National University)
저널정보
한국안전학회 International Journal of Safety International Journal of Safety 제6권 제2호
발행연도
2007.1
수록면
17 - 21 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
This paper aims at the statistical analysis of electrical fire and classification of electrical fire causes to collect electrical fires data efficiently. Electrical fire statistics are produced to monitor the number and characteristics of fires attended by fire fighters, including the causes and effects of fire so that action can be taken to reduce the human and financial cost of fire. Electrical fires make up the majority of fires in Korea(including nearly 30% of total fires according to recent figures), The incorrect and biased knowledge for electrical fires changed the classification of certain types of fires, from non-electrical to electrical. It is convenient and required to develop the standardized form that makes, in the assessment of the cause of electrical fires, the fire fighters directly ticking the appropriate box on the fire report form or making an assessment of a text description. Therefore, it is highly recommended to develop electrical fire cause classification and electrical fire assessment on the fire statistics in order to categorize and assess electrical fires exactly. In this paper newly developed electrical fire cause classification structure, which is well-defined hierarchical structure so that there are not any relationship or overlap between cause categories, is suggested. Also fire statistics systems of foreign countries are introduced and compared.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0