메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Naincy Sahu (Babasaheb Bhimrao Ambedkar University) Chandra Bhan (Babasaheb Bhimrao Ambedkar University) Jiwan Singh (Babasaheb Bhimrao Ambedkar University)
저널정보
대한환경공학회 Environmental Engineering Research Environmental Engineering Research 제26권 제4호
발행연도
2021.8
수록면
89 - 99 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The present study investigated the adsorption efficiency of magnetic activated carbon was synthesized by waste biomass of Pisum sativum (peel) and pyrolysis at 500˚C temperature (MPPAC-500). Derived activated carbon was applied for removal of fluoride from aqueous solution. The MPPAC-500 was characterized by Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), zeta potential, X-ray Diffraction (XRD) and Particle Size Analyser. The fluoride sequestration study was performed in both batch and column systems. The batch adsorption study was focused on parameter like, adsorbent dose, contact time, pH and initial fluoride concentrations. The maximum capacity of fluoride removal was qo = 4.71 (㎎/g). Freundlich isotherm model (R²-0.995) obeyed better than Langmuir (R²-0.979) model. The RL values observed between 0-1 (R<SUB>L</SUB>-0.057) inferred the favourable adsorption. Pseudo-second-order model favoured well than pseudo-first-order in the whole experimental data. In case of column study was performed at two different bed height 5 ㎝ and 10 ㎝ having flow rate of 5 mL/min as well as 10 mL/min. The breakthrough curve and column data were interpreted by Thomas, Adams-Bohart, Yoon-Nelson and Clark model. These finding showed that MPPAC-500 has potential adsorptive capacity for fluoride removal from aqueous solutions in batch and column systems.

목차

ABSTRACT
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Possible Fluoride Adsorption Mechanism on MPPAC-500
5. Conclusions
References

참고문헌 (47)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0