메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Minyoung Kyoung (Hanbat National University) Hyunbean Yi (Hanbat National University)
저널정보
대한전자공학회 IEIE Transactions on Smart Processing & Computing IEIE Transactions on Smart Processing & Computing Vol.9 No.5
발행연도
2020.10
수록면
371 - 381 (11page)
DOI
10.5573/IEIESPC.2020.9.5.371

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
We present a contour recovery framework based on a deep learning model to connect broken contours (breaks) produced by contour detection methods. The idea is that the convolutional neural network iteratively predicts vectors that can grow along the direction of the true contour from the end points of the breaks. For this prediction, we use residual connections training, which models continuous predictions from the previous inference. However, conventional residual connections training is prone to gradually accumulating errors at each inference step. In this work, we propose a ground truth selection algorithm and sub-iteration training to efficiently and reliably train a deep learning model. The ground truth selection extracts a small set of coordinates to represent an actual contour. The sub-iteration training creates the next input that is predicted by additional training of a network replicated from the main network. Our experimental results demonstrate that the ground truth selection creates a ground truth suitable for contour recovery. Moreover, our approach improves the performance of contour detection when applied to the results of existing representative contour detection methods.

목차

Abstract
1. Introduction
2. Related Work
3. Deep Contour Recovery
4. Experiments
5. Conclusions
References

참고문헌 (29)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0