메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Suktae Kang (University of Science and Technology) Myeong-Jong Yu (Agency of Defense Development)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2020
발행연도
2020.10
수록면
631 - 636 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This paper presents a new box particle filter that makes use of evolutionary strategy to assist box contraction. Box contraction is frequently referred to as a constraint satisfaction problem. Since box particles exist in the interval space, this brings an issue called the wrapping effect. To solve this issue, the evolutionary algorithm is taken. Even though evolutionary algorithm is an eminent framework, the evolutionary algorithm itself cannot effectively solve this box contraction issue since genetic operators are blind to constraints. For this reason, the proposed method adopts a repairing process to manage constraints. The proposed evolutionary strategy checks the consistency of box particles based on population fitness and individual fitness. Individual fitness finds defective chromosomes, and population fitness works as a slack variable for each box particle. Both finesses are updated for each contraction which makes evolutionary contraction works as a reinforcement learning. A simple computer simulation shows the efficiency of the proposed evolutionary box particle filter.

목차

Abstract
1. INTRODUCTION
2. BOX PARTICLE FILTER
3. PROBLEM STATEMENT
4. EVOLUTIONARY ALGORITHM
5. EVOLUTIONARY BOX PARTICLE FILTER
6. SIMULATION RESULTS
7. CONCLUSTION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-003-001569852