메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Hogeon Seo (Korea Atomic Energy Research Institute) Sungmoon Joo (Korea Atomic Energy Research Institute)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2020
발행연도
2020.10
수록면
895 - 899 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Three-dimensional (3D) laser scanning is widely used to acquire the structural information of a target as a point cloud and reconstruct its shape. Recently, deep learning has shown good performance for 3D point cloud shape classification. The preprocessing of the point cloud is a primary step of deep learning. This study presents the performance of 3D shape classification via PointNet with a point cloud dataset, ModelNet40, with respect to three preprocessing cases: Random, zero mean, and normalization. The minimum and maximum values of the point cloud are compared according to the preprocessing method. In training, the number of points as an input was 1024. In addition, the influence of two augmentation methods (i.e., resampling and zero filling) was investigated. For this, the number of points was increased to 2048. Of the 2048 points, 1024 points were used the same as in the previous experiment, while the remaining 1024 points were added by resampling or zero filling. The results show that the zero mean method is effective for deep learning and normalization is better, whereas increasing the input size with the resampling or zero filling rather degrades the performance and increases unnecessary training costs.

목차

Abstract
1. INTRODUCTION
2. MODEL AND 3D POINT CLOUD DATA
3. EXPERIMENTS
4. RESULTS AND DISCUSSION
5. CONCLUSIONS
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-003-001569327