메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
정무웅 (경상대학교) 김륜우 (경상대학교) 반태원 (경상대학교)
저널정보
한국정보통신학회 한국정보통신학회논문지 한국정보통신학회논문지 제24권 제11호
발행연도
2020.11
수록면
1,500 - 1,506 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 오버레이 단말 간 직접 (Device-to-Device : D2D) 통신 네트워크를 위한 강화학습 기반 스케쥴링 문제를 연구한다. 강화학습 모델 중 하나인 Q-learning을 이용한 D2D 통신 기술들이 연구되었지만, Q-learning은 상태와 행동의 개수가 증가함에 따라서 높은 복잡도를 유발한다. 이러한 문제를 해결하기 위하여 Deep Q Network(DQN) 기반 D2D 통신 기술들이 연구되었다. 본 논문에서는 무선 통신 시스템 특성을 고려한 DQN 모델을 디자인하고, 피드백 및 시그널링 오버헤드를 줄일 수 있는 DQN 기반 분산적 스케쥴링 방식을 제안한다. 제안 방식은 중앙집중식으로 변수들을 학습시키고, 최종 학습된 파라미터를 모든 단말들에게 전달한다. 모든 단말들은 최종 학습된 파라미터를 이용하여 각자의 행동을 개별적으로 결정한다. 제안 방식의 성능을 컴퓨터 시뮬레이션을 통하여 분석하고, 최적방식, 기회주의적 선택 방식, 전체 전송 방식과 비교한다.

목차

요약
ABSTRACT
Ⅰ. 서론
Ⅱ. 시스템 모델
Ⅲ. D2D 네트워크를 위한 DQN 기반 스케쥴링 기법
Ⅳ. 시뮬레이션 결과
Ⅴ. 결론
REFERENCES

참고문헌 (11)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2021-004-000056766