메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Xuan Truong Nguyen (Seoul National University) Tuan Nghia Nguyen (Seoul National University) Hyuk-Jae Lee (Seoul National University) Hyun Kim (Seoul National University of Science and Technology)
저널정보
대한전자공학회 IEIE Transactions on Smart Processing & Computing IEIE Transactions on Smart Processing & Computing Vol.9 No.6
발행연도
2020.12
수록면
497 - 503 (7page)
DOI
10.5573/IEIESPC.2020.9.6.497

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Recently, convolutional neural network (CNN)-based object detectors such as You Only Look Once (YOLO) have been intensively studied for applications in robotics, drones, and autonomous driving. Although YOLO can run in real time by using a graphics processing unit, the YOLO hardware implementation has received a great deal of interest due to its power efficiency and the potential for massive chip production. However, extensive memory access and high computation complexity are widely known as bottlenecks in YOLO hardware implementation. A common and intuitive approach is to apply quantization, especially binarization, to object detectors. However, the existing binarization methods suffer from substantial degradation in detection performance. To address the problem, this study proposes an accurate weight binarization scheme using two scaling factors. Specifically, a new binary weight optimization problem is formulated, and an analytical solution is derived. Experimental results with well-known PASCAL Visual Object Classes show that the proposed method reduces the detection accuracy degradation by up to 32.18% while meeting the memory and computation requirements of state-of-the-art methods.

목차

Abstract
1. Introduction
2. Related Works
3. The Proposed Scheme
4. Performance Evaluation
5. Conclusion
References

참고문헌 (21)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0