메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Hyeon-Cheol Son (Kumoh National Institute of Technology) Da-Seul Kim (Kumoh National Institute of Technology) Sung-Young Kim (Kumoh National Institute of Technology)
저널정보
한국정보기술학회 JOURNAL OF ADVANCED INFORMATION TECHNOLOGY AND CONVERGENCE Journal of Advanced Information Technology and Convergence Vol.10 No.2
발행연도
2020.12
수록면
167 - 175 (9page)
DOI
10.14801/JAITC.2020.10.2.167

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In this paper, we propose a traffic accident detection on vehicle-mounted camera. In the proposed method, the minimum bounding box coordinates the central coordinates on the bird"s eye view and motion vectors of each vehicle object, and ego-motions of the vehicle equipped with dash-cam are extracted from the dash-cam video. By using extracted 4 kinds features as the input of Bi-LSTM (bidirectional LSTM), the accident probability (score) is predicted. To investigate the effect of each input feature on the probability of an accident, we analyze the performance of the detection the case of using a single feature input and the case of using a combination of features as input, respectively. And in these two cases, different detection models are defined and used. Bi-LSTM is used as a cascade, especially when a combination of the features is used as input. The proposed method shows 76.1% precision and 75.6% recall, which is superior to our previous work.

목차

Abstract
1. Introduction
2. Related works
3. Proposed Methods
4. Experiment
5. Conclusions
References

참고문헌 (14)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2021-004-001437034