메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Seong-Jin Park (RDA) Chul-Woo Lee (RDA) Seong-Heon Kim (RDA) Taek-Keun Oh (Chungnam National University)
저널정보
충남대학교 농업과학연구소 Korean Journal of Agricultural Science Korean Journal of Agricultural Science Vol.47 No.4
발행연도
2020.12
수록면
1,097 - 1,107 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Assessment of soil carbon stock is essential for climate change mitigation and soil fertility. The digital soil mapping (DSM) is well known as a general technique to estimate the soil carbon stocks and upgrade previous soil maps. The aim of this study is to calculate the soil carbon stock in the top soil layer (0 to 30 ㎝) in Jeolla Province of South Korea using the DSM technique. To predict spatial carbon stock, we used Cubist, which a data-mining algorithm model base on tree regression. Soil samples (130 in total) were collected from three depths (0 to 10 ㎝, 10 to 20 ㎝, 20 to 30 ㎝) considering spatial distribution in Jeolla Province. These data were randomly divided into two sets for model calibration (70%) and validation (30%). The results showed that clay content, topographic wetness index (TWI), and digital elevation model (DEM) were the most important environmental covariate predictors of soil carbon stock. The predicted average soil carbon density was 3.88 ㎏·m<SUP>-2</SUP>. The R² value representing the model"s performance was 0.6, which was relatively high compared to a previous study. The total soil carbon stocks at a depth of 0 to 30 ㎝ in Jeolla Province were estimated to be about 81 megatons.

목차

Abstract
Introduction
Materials and Methods
Results and Discussion
Conclusion
References

참고문헌 (20)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2021-520-001435937