메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
유상우 (명지대학교) 신용범 (명지대학교) 신동일 (명지대학교)
저널정보
한국가스학회 한국가스학회지 한국가스학회지 제24권 제6호
발행연도
2020.12
수록면
91 - 97 (7page)

이용수

DBpia Top 10%동일한 주제분류 기준으로
최근 2년간 이용수 순으로 정렬했을 때
해당 논문이 위치하는 상위 비율을 의미합니다.
표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
리튬이온 배터리(LIB)는 다른 배터리에 비해 수명이 길고, 에너지 밀도가 높으며, 자체 방전율이 낮아, 에너지 저장장치(ESS)로 선호되고 있다. 하지만, 2017~2019년 기간 동안 국내에서만도 28건의 화재사고가 발생하였으며, LIB의 운영 중 안전성 및 신뢰성을 보장하기 위해 LIB의 정확한 용량추정은 필수요소이다. 본 연구에서는 LIB의 충방전 cycle에 따른 용량변화를 예측하는 기계학습 기반 모델의 설계에 있어 중요한 요소인 최적 머신러닝 모델의 선정을 위해, Decision Tree, 앙상블학습법, Support Vector Regression, Gaussian Process Regression (GPR) 각각을 이용한 예측모델을 구현하고 성능비교를 실시하였다. 학습을 위해 NASA에서 제공하는 시험데이터를 사용하였으며, GPR이 가장 좋은 예측성능을 보였다. 이를 바탕으로 추가 시험데이터 학습을 통해 개선된 LIB 용량예측과 잔여 수명추정 모델을 개발하여, 운영 중 이상 감지 및 모니터링 성능을 높여, 보다 안전하고 안정된 ESS 운용에 활용하고자 한다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 적용 머신러닝 모델
Ⅲ. 예측모델 모델링
Ⅳ. 결과
Ⅴ. 결론
REFERENCES

참고문헌 (10)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2021-575-001425732