메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
김정수 (한국과학기술원) 변준영 (한국과학기술원) 김창익 (한국과학기술원)
저널정보
대한전자공학회 대한전자공학회 학술대회 2020년도 대한전자공학회 추계학술대회 논문집
발행연도
2020.11
수록면
360 - 364 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Although convolutional neural networks show good performance in the field of image recognition, adversarial attacks on them have become a big threat in recent years because it can cause the neural networks to malfunction by intentionally adding small noise. Such adversarial examples generated from the attacker’s model can also deceive other networks and this intriguing property is called transferability. The more similar the architecture of the two models and the training data, the higher the probability of the attack of the attack being valid. However, it is difficult to change the structure of each neural network dramatically to prevent transferability-based attacks. In this paper, we propose a method to make a model to have a unique computational process by mixing the input feature maps of the convolutional layer without changing the structure of the neural network in order to improve the robustness against transferability-based adversarial attacks. We demonstrate the effectiveness of our method with various convolutional neural networks trained on the CIFAR-10 dataset.

목차

Abstract
Ⅰ. 서론
Ⅱ. 본론
Ⅲ. 실험
Ⅳ. 결론 및 향후 연구 방향
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0