메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
김승환 (성균관대학교) 박은수 (성균관대학교) 굴람 무즈타바 (가천대학교) 류은석 (성균관대학교)
저널정보
한국방송·미디어공학회 한국방송미디어공학회 학술발표대회 논문집 한국방송·미디어공학회 2020 추계학술대회
발행연도
2020.11
수록면
129 - 132 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
최근 모바일 기기에서 딥러닝 모델을 사용하기 위한 경량화 연구가 진행되고 있다. 그중 모델의 가중치 표현 bit를 줄이는 양자화와 사용하기 위한 다양한 압축 알고리즘이 개발되었다. 하지만 대부분의 양자화 및 압축 알고리즘들은 한 번 이상의 Fine-tuning을 거쳐야 하는데 이 과정은 모바일 환경에서 수행하기에는 연산복잡도가 너무 높다. 따라서 본 논문은 양자화된 가중치를 High Efficiency Video Coding(HEVC)을 통해 압축하는 방법을 제안하고 정확도와 압축률을 실험한다. 실험결과는 양자화만 실시한 경우 대비 크기는 25%의 감소했지만, 정확도는 0.7% 감소했다. 따라서 이런 결과는 모바일 기기에 가중치를 전송하는 과정에 적용될 수 있다.

목차

요약
1. 서론
2. 관련 연구
3. HEVC를 통한 가중치 압축
4. 실험 및 결과
5. 결론
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2021-567-001482962