메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
노은솔 (공주대학교) 이사랑 (공주대학교) 홍석무 (공주대학교)
저널정보
한국산학기술학회 한국산학기술학회 논문지 한국산학기술학회논문지 제22권 제2호
발행연도
2021.2
수록면
651 - 658 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (3)

초록· 키워드

오류제보하기
풀림 방지 코팅 볼트는 주로 자동차 안전 관련 부품을 결합하는 데 사용되므로 안전성 유지를 위해 코팅 결함을 사전에 감지해야 한다. 이를 위해 이전 연구 [CNN 및 모델 시각화 기법을 사용한 코팅 볼트 불량 판별]에서는 합성곱신경망을 사용했다. 이때 합성곱 신경망은 데이터 수가 많을수록 이미지 패턴 및 특성 분석 정확도가 증가하지만 그에 따라 학습시간이 증가한다. 또한 확보 가능한 코팅 볼트 샘플이 한정적이다. 본 연구에서는 이전 연구에 전이학습을 추가적으로 적용해 데이터 개수가 적은 경우에도 코팅 결함에 대해 정확한 분류를 하고자 한다. 전이학습을 적용할 때 학습데이터 수와 사전 학습 데이터 ImageNet 간의 유사성을 고려해 분류층만 학습했다. 데이터 학습에는 전역 평균 풀링, 선형 서포트 벡터 머신 및 완전 연결 계층과 같은 분류층을 적용했으며, 고려한 모델 중 완전 연결 계층 방법의 분류층이 가장 높은 95% 정확도를 가진다. 추가적으로 마지막 합성곱층과 분류층을 미세 조정하면 정확도는 97%까지 향상된다. 전이학습 및 미세 조정을 이용하면 선별 정확도를 향상시킴은 물론 이전보다 학습 소요시간을 절반으로 줄일 수 있음을 보였다.

목차

요약
Abstract
1. 서론
2. 본론
3. 연구방법
4. 결론
References

참고문헌 (15)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0