메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김남용 (강원대학교)
저널정보
한국산학기술학회 한국산학기술학회 논문지 한국산학기술학회논문지 제22권 제2호
발행연도
2021.2
수록면
714 - 720 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
머신 러닝 및 신호처리에 활용되고 있는 정보이론적 학습법(ITL, information theoretic learning)은 커널 사이즈(σ) 설정이 매우 민감한 어려움을 지닌다. ITL의 성능지표중 하나인 코렌트로피 함수를 최대화하는 성능지표에 대해, 기울기에 존재하는 1/σ²를 제거한 뒤 남은 커널 사이즈에 대해 적응적으로 조절하는 방법들이 연구되었다. 이 논문에서는, 1/σ²의 커널 사이즈가 실제 시스템의 민감성이나 불안정에 큰 역할을 하고 있으며 남은 부분에 존재하는 커널 사이즈에 대한 최적해는 오차의 절대값 근방에 수렴함에 따라 오히려 수렴 후 가중치 갱신을 멈추게 하는 부작용이 나타남을 밝혔다. 이에 적응적 커널 사이즈 조절 대신 적절한 상수를 선택하는 것이 보다 효과적이라는 것을 제안하였고, 실험결과에서 동일한 수렴 속도에 약 2dB 향상된 정상상태 MSE를 보였다. 제안한 방식을 더욱 열악한 다경로 채널환경에 적용하여 실험한 결과 4dB 이상의 성능향상을 보여 제안한 방식은 열악한 상황일수록 더욱 향상된 성능을 보임을 알 수 있다.

목차

요약
Abstract
1. 서론
2. MCC 비용함수와 기울기
3. 오차감소율 최대화를 위한 커널 사이즈와 Gradient ascent MCC 적용
4. 오차확률밀도 추정법을 위한 커널 사이즈와 Recursive MCC 적용
5. 정상상태에서 커널 사이즈 분석
6. 실험결과 및 고찰
7. 결론
References

참고문헌 (8)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0