메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김재욱 (연세대학교) 박래현 (연세대학교) 권태경 (연세대학교)
저널정보
한국정보보호학회 정보보호학회논문지 정보보호학회논문지 제31권 제1호
발행연도
2021.2
수록면
51 - 59 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
딥러닝 모델은 변이를 통해 훈련 데이터에서 벗어난 입력으로부터 잘못된 예측 결과를 산출할 수 있으며 이는 자율주행, 보안 분야 등에서 치명적인 사고로 이어질 수 있다. 딥러닝 모델의 신뢰성 보장을 위해서는 다양한 변이를 통해 예외적인 상황에 대한 모델의 처리 능력이 검증되어야 한다. 하지만, 기존 연구가 제한된 모델을 대상으로만 수행되었으며, 여러 입력 변이 유형에 구분을 짓지 않고 사용했다. 본 연구에서는 딥러닝 검증 데이터 세트로 널리 사용되고 있는 CIFAR10 데이터 세트를 기반으로 다양한 상용화된 모델과 추가 버전을 포함하여 총 6개의 모델에 대한 신뢰성 검증을 수행한다. 이를 위해 실생활에서 발생할 수 있는 6가지 유형의 입력 변이 알고리즘을 다양한 파라미터와 함께 데이터 세트에 개별적으로 적용하여 각각에 대한 모델의 정확도를 비교함으로써 특정 변이 유형과 관련된 모델의 취약점을 구체적으로 파악한다.

목차

요약
ABSTRACT
I. 서론
II. 연구 배경
III. 입력 변이에 따른 모델 취약점 분석 방법
IV. 실험 및 분석 결과
V. 토의 및 시사점
VI. 결론 및 향후 연구
References

참고문헌 (12)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2021-004-001568069