메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Min-Kim (Inha University) Dong-Hyun Park (Inha University)
저널정보
한국컴퓨터정보학회 한국컴퓨터정보학회논문지 한국컴퓨터정보학회 논문지 제26권 제3호(통권 제204호)
발행연도
2021.3
수록면
35 - 42 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 연구에서는 3차원 RGB-D Xtion2 카메라를 이용하여 보행자의 골격좌표를 추출한 결과를 바탕으로 동적인 특성(속도, 가속도)을 함께 고려하여 딥러닝 모델을 통해 사람을 인식하는 방법을 제안한다. 본 논문의 핵심목표는 RGB-D 카메라로 손쉽게 좌표를 추출하고 새롭게 생성한 동적인 특성을 기반으로 자체 고안한 1차원 합성곱 신경망 분류기 모델(1D-ConvNet)을 통해 자동으로 보행 패턴을 파악하는 것이다. 1D-ConvNet의 인식 정확도와 동적인 특성이 정확도에 미치는 영향을 알아보기 위한 실험을 수행하였다. 정확도는 F1 Score를 기준으로 측정하였고, 동적인 특성을 고려한 분류기 모델(JCSpeed)과 고려하지 않은 분류기 모델(JC)의 정확도 비교를 통해 영향력을 측정하였다. 그 결과 동적인 특성을 고려한 경우의 분류기 모델이 그렇지 않은 경우보다 F1 Score가 약 8% 높게 나타났다.

목차

Abstract
요약
I. Introduction
II. Related works
III. Preliminaries
IV. Experiment
V. Results
VI. Conclusion
REFERENCES

참고문헌 (28)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0