메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
안세현 (삼성전자) 강석주 (서강대학교)
저널정보
한국방송·미디어공학회 방송공학회논문지 방송공학회논문지 제26권 제2호
발행연도
2021.3
수록면
167 - 174 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
초고해상도 변환 문제에서 최근 딥러닝을 사용하면서 큰 성능 개선을 얻고 있다. 빠른 초고해상도 합성곱 신경망 (FSRCNN)은 딥러닝 기반 초고해상도 알고리즘으로 잘 알려져 있으며, 여러 개의 합성곱 층로 추출한 저 해상도의 입력 특징을 활용하여 역합성곱 층에서 초고해상도의 영상을 출력하는 알고리즘이다. 본 논문에서는 병렬 연산 효율성을 고려한 FPGA 기반 합성곱 신경망 가속기를 제안한다. 특히 역합성곱 층을 합성곱 층으로 변환하는 방법을 통해서 에너지 효율적인 가속기를 설계했다. 또한 제안한 방법은 FPGA 리소스를 고려하여 FSRCNN의 구조를 변형한 Optimal-FSRCNN을 제안한다. 사용하는 곱셈기의 개수를 FSRCNN 대비 3.47배 압축하였고, 초고해상도 변환 성능을 평가하는 지표인 PSNR은 FSRCNN과 비슷한 성능을 내고 있다. 이를 통해서 FPGA에 최적화된 네트워크를 구현하여 FHD 입력 영상을 UHD 영상으로 출력하는 실시간 영상처리 기술을 개발했다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 관련 이론
Ⅲ. 제안하는 기법
Ⅳ. 실험 결과
Ⅴ. 결론
참고문헌 (References)

참고문헌 (16)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2021-567-001644699