메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김승욱 (POSTECH) 오기용 (Chung-Ang University) 이승철 (POSTECH)
저널정보
한국소음진동공학회 한국소음진동공학회논문집 한국소음진동공학회논문집 제31권 제2호(통권 259호)
발행연도
2021.4
수록면
177 - 184 (8page)
DOI
10.5050/KSNVE.2021.31.2.177

이용수

DBpia Top 10%동일한 주제분류 기준으로
최근 2년간 이용수 순으로 정렬했을 때
해당 논문이 위치하는 상위 비율을 의미합니다.
표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
Currently, lithium-ion batteries are becoming the most promising power source for a variety of portable electronics as well as electric vehicles. Some of the advantages that promote their widespread usage include their long battery cycle life, high durability, low self-discharge rate, and fast charge rate. However, despite their superiority in comparison with other power sources, there exists a lack of understanding regarding their battery lifetime owing to their sophisticated electrochemical actions, which cannot be sufficiently modeled and predicted using traditional physics-based models. This limitation has motivated the development of numerous data-driven approaches. However, data-driven methods also have certain limitations, such as low interpretability and inability to extrapolate well. This necessitates an alternative method that can leverage the strengths of both models while complementing their drawbacks. In this study, the state-of-health of lithium-ion batteries is estimated using a physics-informed neural network with the integration of physics in the deep learning pipeline. The results of this study indicate that the proposed model outperforms the conventional data-driven methods in RMSE and physical inconsistency.

목차

ABSTRACT
1. 서론
2. 리튬이온 배터리 SoH 모니터링
3. 결론
References

참고문헌 (11)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0