메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Dong-Hwan Hwang (Kangwon National University) Gwi-Seong Moon (Kangwon National University) Yoon Kim (Kangwon National University)
저널정보
한국컴퓨터정보학회 한국컴퓨터정보학회논문지 한국컴퓨터정보학회 논문지 제26권 제4호(통권 제205호)
발행연도
2021.4
수록면
29 - 37 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 안저영상의 다중 스케일 정보를 다루기 위한 딥러닝 기반의 망막 혈관 분할 모델을 제안한다. 제안 모델은 이미지 분할 딥러닝 모델인 U-Net과 선택적 커널 합성곱을 통합한 합성곱 신경망으로 안저영상에서 눈과 관련된 질병을 진단하는데 중요한 정보가 되는 망막 혈관의 다양한 모양과 크기를 갖는 특징 정보를 추출하고 분할한다. 제안 모델은 일반적인 합성곱과 선택적 커널 합성곱으로 구성된다. 일반적인 합성곱 층은 같은 크기 커널 크기를 통해 정보를 추출하는 반면, 선택적 커널 합성곱은 다양한 커널 크기를 갖는 브랜치들에서 정보를 추출하고 이를 분할 주의집중을 통해 적응적으로 조정하여 결합한다. 제안 모델의 성능 평가를 위해 안저영상 데이터인 DRIVE와 CHASE DB1 데이터셋을 사용하였으며 제안 모델은 두 데이터셋에 대하여 F1 점수 기준 82.91%, 81.71%의 성능을 보여 망막 혈관 분할에 효과적임을 확인하였다.

목차

Abstract
요약
I. Introduction
II. Related works
III. The Proposed Scheme
IV. Experimental Results
Ⅴ. Conclusions
REFERENCES

참고문헌 (24)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0