메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
저널정보
한국통신학회 한국통신학회 APNOMS 한국통신학회 APNOMS 2020
발행연도
2020.9
수록면
220 - 226 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Reinforcement learning (RL) has been used in various path finding applications including games, robotics and autonomous systems. Deploying Service Function Chain (SFC) with optimal path and resource utilization in edge computing environment is an important and challenging problem to solve in Software Defined Network (SDN) paradigm. In this paper we used RL based Q-Learning algorithm to find an optimal SFC deployment path in edge computing environment with limited computing and storage resources. To achieve this, our deployment scenario uses a hierarchical network structure with local, neighbor and datacenter servers. Our Q-Learning algorithm uses an intuitive reward function which does not only depend on the optimal path but also considers edge computing resource utilization and SFC length. We defined regret and empirical standard deviation as evaluation parameters. We evaluated our results by making 1200 test cases with varying SFC-length, edge resources and Virtual Network Function’s (VNF) resource demand. The computation time of our algorithm varies between 0.03~0.6 seconds depending on the SFC length and resource requirement.

목차

Abstract
Ⅰ. INTRODUCTION
Ⅱ. RELATED WORKS
Ⅲ. METHOD
Ⅳ. RESULT AND DISCUSSION
Ⅴ. CONCLUSION & FUTURE WORK
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2021-567-001678237