메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Yonghua Huo (CETC) Jing Dong (Beijing University of Posts and Telecommunications) Zhongdi Ge (Beijing University of Posts and Telecommunications) Ping Xie (CETC) Na An (CETC) Yang Yang (Beijing University of Posts and Telecommunications)
저널정보
한국통신학회 한국통신학회 APNOMS 한국통신학회 APNOMS 2020
발행연도
2020.9
수록면
167 - 172 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The mining of association rules plays an important role in fault prediction. Many studies have shown that there is an obvious temporal and spatial correlation between the failure records of the cluster system. Therefore, most cluster system failure prediction engines are built based on causal correlation analysis between log events. However, the original system log file usually contains a large number of invalid records (duplicate or non-fault related records), which makes the mining of event correlation extremely difficult and seriously affects the efficiency and accuracy of fault prediction. Therefore, this paper proposes an association rule mining and self-updating method based on weighted increment, named IWApriori (improved weighted Apriori algorithm). The method includes two important steps: 1) log preprocessing; 2) mining and updating of association rules based on improved algorithm IWApriori. This method can effectively improve the rule completeness and realize the efficient mining and updating of rules in the whole life cycle of the system. In addition, we used the real log data set Blue Gene/L to validate our method. The results show that our association rule mining method is better than other methods in terms of time performance, space performance and the effectiveness of mining rules.

목차

Abstract
Ⅰ. INTRODUCTION
Ⅱ. RELATED WORK
Ⅲ. IWAPRIORI
Ⅳ. EXPERIMENT
Ⅴ. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2021-567-001678348