메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
배재웅 (한국과학기술원) 정원호 (한국과학기술원) 박용화 (한국과학기술원)
저널정보
대한기계학회 대한기계학회 춘추학술대회 대한기계학회 신뢰성부문 2021년도 춘계학술대회 논문집
발행연도
2021.4
수록면
117 - 117 (1page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
최근 데이터 불균형 문제를 해결하기 위해 고장데이터 증대 연구가 활발하다. 하지만 분포 학습기반 고장데이터 증대 기법은 데이터 특성에 따라 크게 변해 고장 진단 방법론에 적용이 어렵다. 본 연구에서는 고장 데이터 없이 정상 데이터 기반 베어링 이상 진단 기법을 제안한다. 제안된 방법은 세 단계로 구성된다: (1) 정상데이터 기반 데이터 증강, (2) 컨볼루션 신경망 기반 특성인자 추출, 그리고 (3) 이상 기준치 설계. 정상데이터 기반 데이터 증강 ... 전체 초록 보기

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2021-550-001680745