메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Lei Meng (Woosong University)
저널정보
한국관광연구학회 관광연구저널 관광연구저널 제35권 제4호
발행연도
2021.4
수록면
33 - 47 (15page)
DOI
10.21298/IJTHR.2021.4.35.4.33

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Scholars investigating customer values and behavior in the field of tourism have used various measurement procedures. This study reviews the application of means-end chain (MEC) theory and its accompanying laddering technique in tourism and hospitality research. MEC theory provides a theoretical framework for scholars to understand consumer behavior. By reviewing 39 publications, this study aimed to comb previous reviews on MEC theory in the tourism industry via a more systematic and integrated review of this literature. We performed bibliometric analysis, which allowed us to establish study clusters, identify key research objects, distinguish interrelations, and excavate collaboration patterns. Content analysis was used to transform crucial results systematically and identify the importance of MEC theory in tourism research, the comprehensive application of multiple models and laddering techniques, and alternative approaches to grouping hierarchical value maps. The conclusion shows that tourism motivation is the most researched theme, and China and Chinese tourists are the most researched region and subjects. This study contributes theoretically and methodologically to the literature related to MEC theory. Theoretically, it bridges the gap of MEC theory used in tourism research and provides theoretical reference for the tourism industry. Methodologically, it also can lead respondents to think about their inner values in response to research questions. Moreover, it can be used alongside other research methods to contribute to more comprehensive and valuable knowledge about tourism.

목차

Abstract
Ⅰ. Introduction
Ⅱ. MEC theory: Background
Ⅲ. Methodology
Ⅳ. Bibliometric analysis
Ⅴ. Discussion
References

참고문헌 (91)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2021-326-001701643