메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
유동철 (미래환경플랜건축사사무소) 김경수 (미래환경플랜건축사사무소) 최창호 (광운대학교) 조성은 (일본 동양대학교) 장향인 (미래환경플랜건축사사무소)
저널정보
한국건축친환경설비학회 한국건축친환경설비학회 논문집 한국건축친환경설비학회 논문집 제15권 제2호
발행연도
2021.4
수록면
152 - 165 (14page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The purpose of this study is to develop a prediction model that can evaluate energy consumption before and after remodeling through a reference model for low-rise residential buildings for which energy simulation evaluation is difficult due to its aging. Specifically, a prediction model to evaluate various building elements before remodeling and a model to predict savings due to the application of energy-saving technology were developed. For the objective, the energy simulation analysis of a building was performed using DesignBuilder per reference area of a Detached house, Multi-family house, and Row House. In addition, the significance of machine learning was compared and analyzed by using R², MSE, RMSE, CVRMSE indicators and Python’s linear regression, random forest, and neural network. As a result of this analysis, both the model to evaluate the status before remodeling and the model to evaluate the reduction rate according to the energy-saving technology after remodeling showed a high determination coefficient of 0.9 or more for the neuron network. The CVRMSE was analyzed as low as 15% or less. As this is less than the index used in the M&V evaluation presented in the ASHRAE Guideline 14, it was verified that there is a statistical significance. Therefore, this aims to contribute to the basic data and green remodeling promotion project in the energy performance improvement project for the old, private low-rise residential buildings and also in the energy-saving evaluation for buildings.

목차

ABSTRACT
서론
선행연구 고찰
리모델링 전·후 소요량 예측을 위한 예측모델 분석
결론
References

참고문헌 (12)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0