메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
노영단 (Inha Technical College) 조규철 (Inha Technical College)
저널정보
한국컴퓨터정보학회 한국컴퓨터정보학회논문지 한국컴퓨터정보학회 논문지 제26권 제5호(통권 제206호)
발행연도
2021.5
수록면
39 - 46 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
인공지능은 현재 인공지능 번역기, 페이스 아이디와 같이 우리의 삶 다양한 곳에 적용되고 있으며 여러 가지 장점으로 많은 산업분야에서도 적용되고 있다. 본 연구는 매년 방대한 양의 콘텐츠들이 넘쳐나는 상황에서 인공지능을 적용한 카테고리 분류로 원하는 데이터를 추출함으로써 편의성을 제공한다. 본 연구에서는 텍스트 분류에서 두각을 나타내고 있는 LSTM(Long-Short Term Memory network)을 사용한 모델을 제안하며 자연어 처리에 적합한 구조를 가진 RNN(Recurrent Neural Network)과 BiLSTM(Bidirectional LSTM)을 사용한 모델과의 성능을 비교한다. 세 가지 모델의 성능비교는 뉴스 텍스트 데이터에 적용해 accuracy, precision, recall의 측정값을 사용해 비교하였고 그 결과 LSTM모델의 성능이 가장 우수한 것으로 나타났다. 따라서 본 연구에서는 LSTM을 사용한 텍스트 분류를 권장한다.

목차

Abstract
요약
Ⅰ. Introduction
Ⅱ. Preliminaries
Ⅲ. A News Text Classification Using LSTM
Ⅳ. Experiment
Ⅴ. Conclusions
REFERENCES

참고문헌 (16)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0