메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Jung Taek Rhee (Yonsei University) Won Bin Ahn (Korea Institute of Science and Technology) Kyong Joo Oh (Yonsei University)
저널정보
계명대학교 자연과학연구소 Quantitative Bio-Science Quantitative Bio-Science Vol.40 No.1
발행연도
2021.5
수록면
31 - 37 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In this paper, we use the machine learning model to make predictions about the winning bid rate of apartments nationwide. The winning bid rate for apartments should consider various variables. There is a possibility that the existing hedonic priming models might predict uncertain results because of methodological constraints. In this paper, we aim to improve the predictions of apartment auction winning rates by utilizing algorithms such as Random Forest, XGBoost, LightGBM, and DNN, which are robust to problems such as nonlinearity and multicollinearity. A total of 111,232 nationwide apartment auction data were learned and tested from January 2010 to June 2020 by using the data provided by the GG auction and macroeconomic variables collected from KOSIS. In addition, a moving window methodology and an extending window methodology are applied considering by the characteristics of the social science data whose probability structure changes over time. Empirical study shows that the Gradient Boosting models outperforms other models in terms of MAPE, RMSE, MedAE, and AbsMean. There is no significant difference between a moving window methodology and an extended window methodology.

목차

ABSTRACT
1. Introduction
2. Methodology
3. Data and Methods
4. Data Analysis
5. Conclusion
References

참고문헌 (27)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2021-047-001745516