메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Mutaz Al-Tarawneh (Mutah University)
저널정보
한국지능시스템학회 INTERNATIONAL JOURNAL of FUZZY LOGIC and INTELLIGENT SYSTEMS INTERNATIONAL JOURNAL of FUZZY LOGIC and INTELLIGENT SYSTEMS Vol.21 No.2
발행연도
2021.6
수록면
101 - 122 (22page)
DOI
10.5391/IJFIS.2021.21.2.101

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This paper reports on the use of online data stream classification algorithms to support workload orchestration in vehicular edge computing environments. These algorithms can be used to predict the ability of available computational nodes to successfully handle computational tasks generated from vehicular applications. Several online data stream classification algorithms have been evaluated based on synthetic datasets generated from simulated vehicular edge computing environments. In addition, a multi-criteria decision analysis technique was utilized to rank the different algorithms based on their performance metrics. The evaluation results demonstrate that the considered algorithms can handle online classification operations with various trade-offs and dominance relations with respect to their obtained performance. In addition, the utilized multi-criteria decision analysis technique can efficiently rank various algorithms and identify the most appropriate algorithms to augment workload orchestration. Furthermore, the evaluation results show that the leveraging bagging algorithm, with an extremely fast decision tree base estimator, is able to maintain marked online classification performance and persistent competitive ranking among its counterparts for all datasets. Hence, it can be considered a promising choice to reinforce workload orchestration in vehicular edge computing environments.

목차

Abstract
1. Introduction
2. Data Stream Classification
3. Research Tools and Methodology
4. Results and Analysis
5. Conclusion
References

참고문헌 (58)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0