메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김현지 (인천대학교) 안재균 (인천대학교)
저널정보
Korean Institute of Information Scientists and Engineers Journal of KIISE Journal of KIISE Vol.48 No.7
발행연도
2021.7
수록면
842 - 849 (8page)
DOI
10.5626/JOK.2021.48.7.842

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
암의 예후와 관련이 있는 유전자를 식별하고 이를 이용하여 암환자의 예후를 예측하는 것은 환자에게 효과적인 치료방법을 제공하는데 기여하는 바가 크다. 유전자 발현 데이터를 이용하여 예후 관련 유전자를 탐색하거나 암의 예후를 예측하기 위한 다양한 연구방법들이 제시되었으며, 최근에는 딥러닝을 비롯한 머신러닝 기법들이 집중적으로 연구되고 있다. 하지만 유전자 발현량 데이터에 기계학습 방법을 적용하는 것은 사용 가능한 샘플의 수가 적고 유전자의 수가 많다는 근본적인 문제가 있다. 본 연구에서는 유전자 네트워크 데이터를 추가적으로 사용하여, 많은 수의 무작위 유전자 경로를 학습 데이터 사용함으로써 적은 수의 샘플이라는 문제를 보완하고자 한다. 본 연구에서 제시하는 방법을 이용하여 5가지 암에 대한 유전자 발현 데이터와 유전자 네트워크를 이용하여 예후 특이적 유전자를 식별하고 환자의 예후를 예측한 결과, 다른 기존 방법들과 비교하여 높은 정확도로 예측을 하는 것을 확인할 수 있었으며, 적은 샘플을 사용한 예측에서 높은 성능을 확인할 수 있었다.

목차

요약
Abstract
1. 서론
2. 본론
3. 실험 및 결과
4. 결론
References

참고문헌 (20)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0