메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
신윤석 (경기대)
저널정보
대한건축학회 대한건축학회논문집 大韓建築學會論文集 第37卷 第7號(通卷 第393號)
발행연도
2021.7
수록면
195 - 202 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The rise of land prices and population density in urban areas has led to a need for deeper excavations, both for the building ground and the underground. It is difficult to select a retaining wall method that is appropriate for a construction site, not only because the retaining wall method should be chosen at an early stage of a construction project, at which time there is a lack of information on surrounding characteristics of the site, but also because there are uncertain factors such as underground water and the underlying rock formation. An inappropriate retaining wall method may cause changes in the original design or method of retaining wall, resulting in an inevitable increase in construction costs. Despite this fact, construction practitioners generally select a retaining wall method depending on their own limited, subjective experience and intuition. For this reason, in this study, I applied the stochastic gradient tree boosting (SGTB) technique to selecting a retaining wall method to assess the applicability of the technique to a work method selection. To evaluate the SGTB technique"s performance, I built the models using NN as well as SGTB and then compared the results between the models. As a result, it was found out that the SGTB is relatively more excellent and stable compared to NN model when it comes to selecting a retaining wall. Consequently SGTB is helpful to practitioners who need to determine the excavation work at building construction project.

목차

Abstract
1. 서론
2. 이론적 고찰
3. 흙막이공법 선정을 위한 SGTB 모델 구축
4. SGTB 모델의 사례 적용
5. 결론
REFERENCES

참고문헌 (29)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2021-540-001878449