메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Nagaraj Yamanakkanavar (조선대학교) Bumshik Lee (조선대학교)
저널정보
한국통신학회 한국통신학회 학술대회논문집 2021년도 한국통신학회 하계종합학술발표회 논문집
발행연도
2021.6
수록면
539 - 542 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Accurate segmentation of brain tissue in a magnetic resonance imaging (MRI) is an important biomarker of medical imaging. Hence, segmentation methods are in research focus and various methods are presented in the literature. In this paper, we proposed the novel M-SegNet architecture with fire module (squeeze and expand layers) for segmentation of brain MRI. The proposed model utilizes long-skip connections, as well as squeeze and expand convolutional layers from the fire module to segment brain MRI. The M-SegNet architecture consists of a multi-scale deep network at the encoder side, deep supervision at the decoder side, and the architecture uses pooling indices along with skip-connections from the encoder to the decoder layer. The multi-scale side input layers are used to support deep layers for extracting the discriminative information and the decoder side provides deep supervision to reduce the gradient problem. The skip-connections are used to pass features from the encoder to the decoder path to recover the spatial information lost during down-sampling and pooling indices helps for faster convergence of the model. Besides, the proposed method results in fewer parameters generation with efficient memory use and, hence is faster to train in comparison with conventional methods. The proposed method was evaluated against widely used segmentation methods on publically available datasets. Experimental results show that the proposed method can segment brain MRI more accurately as compared with several state-of-the-art methods.

목차

요약
Ⅰ. 서론
Ⅱ. 본론
Ⅲ. 결론
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0