메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Ji-Hye Kim (Hannam University) Yong-hun Lee (Chungnam National University)
저널정보
한국언어학회 언어 언어 제46권 제3호
발행연도
2021.9
수록면
615 - 633 (19page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
It is well known that the language women use is different from men"s use. In this paper, the researchers examine men"s and women"s speech through sentiment analysis. For the study of gender differences, this study uses the BNC64 corpus, whose files are selected from the British National Corpus (BNC). The BNC64 corpus is composed of 64 files, which are taken from the spoken part of the BNC. The corpus contains 32 files for male speakers and 32 files for female speakers that represent the characteristics of male vs. female differences. The study analyzed all 64 files using sentiment analysis and tried to discover the differences. It is known that there are roughly three types of approach to sentiment analysis: dictionary-based analysis, machine-learning-based analysis, and deep-learning-based analysis. This study takes the first and third kind of analyses. In the dictionary-based analysis, the researchers calculate the sentiment score (SS), sentiment word ratio (SR), and positive word ratio (PR). In the deep-learning analysis, the researchers take two different sorts of analyses: the GRU (Gated Recurrent Units) and the BERT (Bidirectional Encoder Representations from Transformers). Through the analyses, the study finds that (i) there is no significant differences in SS and SR between men and women, (ii) women usually use more positive words than men, and the differences are statistically significant, and (iii) the deep-learning-based analysis is much superior to modelling the gender differences in the sentiment analysis.

목차

1. Introduction
2. Previous Studies
3. Research Method
4. Analysis Results
5. Discussion
6. Conclusion
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0