메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
김민성 (한양대학교) 이제겸 (한양대학교) 최요현 (한양대학교) 김선홍 ((주)성진이엔씨) 정건웅 ((주)성진이엔씨) 김기림 ((주)유신) 이승원 (한양대학교)
저널정보
대한화약발파공학회 화약발파 화약 발파 제38권 제4호
발행연도
2020.1
수록면
16 - 25 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
터널 발파 굴착 시 발생되는 진동을 저감시키기 위해 사용되는 MSP(Multi-setting smart-investigation of the ground and pre-large hole boring method) 공법은 1회 천공 시 수평방향으로 50m에 달하는 장거리를 천공하기 때문에 고 중량 해머비트와 롯드의 일방향 회전으로 롯드의 처짐과 우향 현상이 동반된다. 이는 전문가의 경험과 시공 이력을 바탕으로 가변적인 세팅을 통해 일부 보정되고 있다. 그러나 암반 특성, 장비 상태, 경험 부족 등은 목표 지점으로부터 천공 오차를 발생시키는 원인이 되며, 큰 이격 오차 발생 시 재시공으로 인한 공기 증가와 경제적 손실이 발생된다. 본 연구에서는 딥러닝을 활용하여 상황별 천공 장비의 최적 세팅조건 산정 모델을 개발하였으며, 학습 과정에서 발생 가능한 과적합 문제를 방지하기 위해 dropout, early stopping, pre-training 기법들을 사용하여 향상된 결과를 도출하였다. 본 연구를 통해 대구경 천공 장비의 상황별 초기세팅 산정 모델 개발의 높은 가능성을 확인했으며, 지속적인 데이터 수집과 다양한 인자들의 추가 학습을 통해 최적화된 세팅 가이드라인을 개발할 수 있을 것으로 기대된다

목차

등록된 정보가 없습니다.

참고문헌 (8)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0