메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
현종윤 (건국대학교) Jaeseon Kim (CRYPTO LAB INC.)
저널정보
대한수학회 대한수학회지 대한수학회지 제58권 제1호
발행연도
2021.1
수록면
29 - 44 (16page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
The set $D$ of column vectors of a generator matrix of a linear code is called a defining set of the linear code. In this paper we consider the problem of constructing few-weight (mainly two- or three-weight) linear codes from defining sets. It can be easily seen that we obtain an one-weight code when we take a defining set to be the nonzero codewords of a linear code. Therefore we have to choose a defining set from a non-linear code to obtain two- or three-weight codes, and we face the problem that the constructed code contains many weights. To overcome this difficulty, we employ the linear codes of the following form: Let $D$ be a subset of $\mathbb{F}_2^n$, and $W$ (resp.~$V$) be a subspace of $\mathbb{F}_2$ (resp.~$\mathbb{F}_2^n$). We define the linear code $\mathcal{C}_D(W; V)$ with defining set $D$ and restricted to $W, V$ by \[ \mathcal{C}_D(W; V) = \{(s+u\cdot x)_{x\in D^*} \,|\, s\in W, u\in V\}. \] We obtain two- or three-weight codes by taking $D$ to be a Vasil'ev code of length $n=2^m-1 (m \geq 3)$ and a suitable choices of $W$. We do the same job for $D$ being the complement of a Vasil'ev code. The constructed few-weight codes share some nice properties. Some of them are optimal in the sense that they attain either the Griesmer bound or the Grey-Rankin bound. Most of them are minimal codes which, in turn, have an application in secret sharing schemes. Finally we obtain an infinite family of minimal codes for which the sufficient condition of Ashikhmin and Barg does not hold.

목차

등록된 정보가 없습니다.

참고문헌 (11)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0