메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Yinan Sun (Northeastern University) Tie Zhang (Northeastern University)
저널정보
대한수학회 대한수학회지 대한수학회지 제58권 제3호
발행연도
2021.1
수록면
553 - 569 (17page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
In this paper, we present and analyze a fully discrete numerical method for solving the time-fractional diffusion wave equation: $\partial^\beta_tu-\hbox{div}(a\nabla u)=f$, $1<\beta<2$. We first construct a difference formula to approximate $\partial^\beta_tu$ by using an interpolation of derivative type. The truncation error of this formula is of $O(\triangle t^{2+\delta-\beta})$-order if function $u(t)\in C^{2,\delta}[0,T]$ where $0\leq\delta\leq 1$ is the H\"older continuity index. This error order can come up to $O(\triangle t^{3-\beta})$ if $u(t)\in C^3[0,T]$. Then, in combinination with the linear finite volume discretization on spatial domain, we give a fully discrete scheme for the fractional wave equation. We prove that the fully discrete scheme is unconditionally stable and the discrete solution admits the optimal error estimates in the $H^1$-norm and $L_2$-norm, respectively. Numerical examples are provided to verify the effectiveness of the proposed numerical method.

목차

등록된 정보가 없습니다.

참고문헌 (26)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0