메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
조동현 (경기대학교)
저널정보
대한수학회 대한수학회지 대한수학회지 제58권 제3호
발행연도
2021.1
수록면
609 - 631 (23page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Let $C[0,T]$ denote a generalized analogue of Wiener space, the space of real-valued continuous functions on the interval $[0,T]$. Define $Z_{\vec e,n}:C[0,T]\to\mathbb R^{n+1}$ by \begin{align*} Z_{\vec e,n}(x)=\left(x(0),\int_0^Te_1(t)dx(t),\ldots,\int_0^Te_n(t)dx(t)\right), \end{align*} where $e_1, \ldots,e_n$ are of bounded variations on $[0,T]$. In this paper we derive a simple evaluation formula for Radon-Nikodym derivatives similar to the conditional expectations of functions on $C[0,T]$ with the conditioning function $Z_{\vec e,n}$ which has an initial weight and a kind of drift. As applications of the formula, we evaluate the Radon-Nikodym derivatives of various functions on $C[0,T]$ which are of interested in Feynman integration theory and quantum mechanics. This work generalizes and simplifies the existing results, that is, the simple formulas with the conditioning functions related to the partitions of time interval $[0,T]$.

목차

등록된 정보가 없습니다.

참고문헌 (12)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0