메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Dang Vo Phuc (University of Khanh Hoa)
저널정보
대한수학회 대한수학회지 대한수학회지 제58권 제3호
발행연도
2021.1
수록면
643 - 702 (60page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Fix $\mathbb Z/2$ is the prime field of two elements and write $\mathcal A_2$ for the mod $2$ Steenrod algebra. Denote by $GL_d:= GL(d, \mathbb Z/2)$ the general linear group of rank $d$ over $\mathbb Z/2$ and by $\mathscr P_d$ the polynomial algebra $\mathbb Z/2[x_1, x_2, \ldots, x_d]$ as a connected unstable $\mathcal A_2$-module on $d$ generators of degree one. We study the {\it Peterson {\rm``}hit problem{\rm ''}} of finding the minimal set of $\mathcal A_2$-generators for $\mathscr P_d.$ Equivalently, we need to determine a basis for the $\mathbb Z/2$-vector space $$Q\mathscr P_d := \mathbb Z/2\otimes_{\mathcal A_2} \mathscr P_d \cong \mathscr P_d/\mathcal A_2^+\mathscr P_d$$ in each degree $n\geq 1.$ Note that this space is a representation of $GL_d$ over $\mathbb Z/2.$ The problem for $d= 5$ is not yet completely solved, and unknown in general. In this work, we give an explicit solution to the hit problem of five variables in the generic degree $n = r(2^t -1) + 2^ts$ with $r = d = 5,\ s =8$ and $t$ an arbitrary non-negative integer. An application of this study to the cases $t = 0$ and $t = 1$ shows that the Singer algebraic transfer of rank $5$ is an isomorphism in the bidegrees $(5, 5+(13.2^{0} - 5))$ and $(5, 5+(13.2^{1} - 5)).$ Moreover, the result when $t\geq 2$ was also discussed. Here, the Singer transfer of rank $d$ is a $\mathbb Z/2$-algebra homomorphism from $GL_d$-coinvariants of certain subspaces of $Q\mathscr P_d$ to the cohomology groups of the Steenrod algebra, ${\rm Ext}_{\mathcal A_2}^{d, d+*}(\mathbb Z/2, \mathbb Z/2).$ It is one of the useful tools for studying these mysterious Ext groups.

목차

등록된 정보가 없습니다.

참고문헌 (72)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0