지원사업
학술연구/단체지원/교육 등 연구자 활동을 지속하도록 DBpia가 지원하고 있어요.
커뮤니티
연구자들이 자신의 연구와 전문성을 널리 알리고, 새로운 협력의 기회를 만들 수 있는 네트워킹 공간이에요.
이용수
등록된 정보가 없습니다.
논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!
A $(k,\mu)$-contact metric manifold as an $\eta-$Einstein soliton
한국수학논문집
2024 .06
Certain results on contact metric generalized $(\kappa,\mu)$-space forms
대한수학회논문집
2019 .01
Certain semisymmetry properties of $(\kappa,\;\mu)$-contact metric manifolds
대한수학회보
2016 .01
A Note on Yamabe Solitons and Gradient Yamabe Solitons
Kyungpook Mathematical Journal
2022 .03
Generalized Ricci Solitons on N(κ)-contact Metric Manifolds
Kyungpook Mathematical Journal
2023 .06
On weakly Einstein almost contact manifolds
대한수학회지
2020 .01
Generalized Quasi-Einstein Metrics and Contact Geometry
Kyungpook Mathematical Journal
2022 .09
Ricci $\rho$-Solitons on 3-dimensional $\eta$-Einstein almost Kenmotsu manifolds
대한수학회논문집
2020 .01
On generalized quasi-conformal $N(k,\mu )$-manifolds
대한수학회논문집
2016 .01
Gradient Einstein-type contact metric manifolds
대한수학회논문집
2020 .01
Some results in $\eta$-Ricci soliton and gradient $\rho$-Einstein soliton in a complete Riemannian manifold
대한수학회논문집
2019 .01
Ricci solitons and Ricci almost solitons on para-Kenmotsu manifold
대한수학회보
2019 .01
Gradient Ricci almost solitons on two classes of almost Kenmotsu manifolds
대한수학회지
2016 .01
On a class of generalized recurrent $(k,\mu)$-contact metric manifolds
대한수학회논문집
2020 .01
A note on almost Ricci soliton and gradient almost Ricci soliton on para-Sasakian manifolds
한국수학논문집
2020 .01
A REMARK ON QUASI CONTACT METRIC MANIFOLDS
대한수학회보
2015 .01
Sasakian 3-manifolds admitting a gradient Ricci-Yamabe soliton
한국수학논문집
2021 .09
3-Dimensional Trans-Sasakian Manifolds with Gradient Generalized Quasi-Yamabe and Quasi-Yamabe Metrics
Kyungpook Mathematical Journal
2021 .09
Ricci-Yamabe Solitons and Gradient Ricci-Yamabe Solitons on Kenmotsu 3-manifolds
Kyungpook Mathematical Journal
2021 .12
On a classification of warped product manifolds with gradient Yamabe solitons
대한수학회논문집
2020 .01
0