메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Thavisack Sihalath (경상국립대학교) Jayanta Kumar Basak (경상대학교) Anil Bhujel (경상국립대학교) Elanchezhian Arulmozhi (경상대학교) 문병은 (경상국립대학교) 김나은 (경상국립대학교) 이덕현 (경상국립대학교) 김현태 (경상국립대학교)
저널정보
경상대학교 농업생명과학연구원(구 경상대학교 시설원예연구소) 농업생명과학연구 농업생명과학연구 제55권 제2호
발행연도
2021.1
수록면
99 - 107 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
The important thing in the field of deep learning is to find out the appropriate hyper-parameter for image classification. In this study, the main objective is to investigate the performance of various hyper-parameters in a convolutional neural network model based on the image classification problem. The dataset was obtained from the Kaggle dataset. The experiment was conducted through different hyper-parameters. For this proposal, Stochastic Gradient Descent without momentum (SGD), Adaptive Moment Estimation (Adam), Adagrad, Adamax optimizer, and the number of batch sizes (16, 32, 64, 120), and the number of epochs (50, 100, 150) were considered as hyper-parameters to determine the losses and accuracy of a model. In addition, Binary Cross-entropy Loss Function (BCLF) was used for evaluating the performance of a model. In this study, the VGG16 convolutional neural network was used for image classification. Empirical results demonstrated that a model had minimum losses obtain by Adagrad optimizer in the case of 16 batch sizes and 50 epochs. In addition, the SGD with a 32 batch sizes and 150 epochs and the Adam with a 64 batch sizes and 50 epochs had the best performance based on the loss value during the training process. Interestingly, the accuracy was higher while performing the Adagrad and Adamax optimizer with a 120 batch sizes and 150 epochs. In this study, the Adagrad optimizer with a 120 batch sizes and 150 epochs performed slightly better among those optimizers. In addition, an increasing number of epochs can improve the performance of accuracy. It can help to create a broader scope for further experiments on several datasets to perceive the suitable hyper-parameters for the convolutional neural network. Dataset: https://www.kaggle.com/c/dogs-vs-cats/data

목차

등록된 정보가 없습니다.

참고문헌 (25)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0