메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
신승수 (광운대학교) 조휘연 (광운대학교) 김용혁 (광운대학교)
저널정보
한국융합학회 한국융합학회논문지 한국융합학회논문지 제12권 제1호
발행연도
2021.1
수록면
49 - 55 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
최근에는 데이터베이스의 발달로 금융, 보안, 네트워크 등에서 생성된 많은 데이터가 저장 가능하며, 기계학습 기반 분류기를 통해 분석이 이루어지고 있다. 이 때 주로 야기되는 문제는 데이터 불균형으로, 학습 시 다수 범주의 데이터들로 과적합이 되어 분류 정확도가 떨어지는 경우가 발생한다. 이를 해결하기 위해 소수 범주의 데이터 수를 증가시키는 오버샘플링 전략이 주로 사용되며, 데이터 분포에 적합한 기법과 인자들을 다양하게 조절하는 과정이 필요하다. 이러한 과정의 개선을 위해 본 연구에서는 스모트와 생성적 적대 신경망 등 다양한 기법 기반의 오버샘플링 조합과 비율을 유전알고리즘을 통해 탐색하고 최적화 하는 전략을 제안한다. 제안된 전략과 단일 오버샘플링 기법으로 신용카드 사기 탐지 데이터를 샘플링 한 뒤, 각각의 데이터들로 학습한 분류기의 성능을 비교한다. 그 결과 유전알고리즘으로 기법별 비율을 탐색하여 최적화 한 전략의 성능이 기존 전략들 보다 우수했다.

목차

등록된 정보가 없습니다.

참고문헌 (16)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0