메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
정승수 (한경대학교) 김남호 (한국폴리텍대학교 분당융합기술교육원) 유윤섭 (한경대학교)
저널정보
한국정보통신학회 한국정보통신학회논문지 한국정보통신학회논문지 제25권 제11호
발행연도
2021.11
수록면
1,649 - 1,654 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (6)

초록· 키워드

오류제보하기
본 논문에서는 고령자의 낙상상황을 감지할 수 있는 텐서플로우 장단기 메모리 기반 낙상감지 시스템의 정규화에 대하여 소개한다. 낙상감지는 고령자의 몸에 부착한 3축 가속도 센서 데이터를 사용하며, 총 7가지의 행동 패턴들에 대하여 학습하며, 각각 4가지는 일상생활에서 일어나는 패턴이고, 나머지 3가지는 낙상에 대한 패턴이다. 학습시에는 손실함수(loss function)를 효과적으로 줄이기 위하여 정규화 과정을 진행하며, 정규화 과정은 데이터에 대하여 최대최소 정규화, 손실함수에 대하여 L2 정규화 과정을 진행한다. 3축 가속도 센서를 이용하여 구한 다양한 파라미터에 대하여 정규화 과정의 최적의 조건을 제시한다. 낙상 검출율면에서 SVM을 이용하고 정규화 127과 정규화율 λ0.00015일 때 Sensitivity 98.4%, Specificity 94.8%, Accuracy 96.9%로 가장 좋은 모습을 보였다.

목차

요약
ABSTRACT
Ⅰ. 서론
Ⅱ. 낙상감지 시스템
Ⅲ. 정규화 결과
Ⅳ. 결론
REFERENCES

참고문헌 (17)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2022-004-000032017