메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
안영준 (서울대학교) 심규석 (서울대학교)
저널정보
Korean Institute of Information Scientists and Engineers Journal of KIISE Journal of KIISE Vol.48 No.12
발행연도
2021.12
수록면
1,343 - 1,348 (6page)
DOI
10.5626/JOK.2021.48.12.1343

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
이 논문에서는 데이터의 레이블이 매우 부족한 상황에서 데이터 증강기법과 강인 손실 함수를 사용하여 준 지도 학습을 하는 방법을 제안한다. 기존 데이터 증강기법을 사용하는 준 지도 학습 방법은 레이블이 없는 데이터를 증강하고, 그 중 신뢰도가 높은 데이터에 대해서만 현재 모델이 예측한 레이블을 원 핫 벡터로 붙여 학습에 사용한다. 그래서 신뢰도가 낮은 데이터는 사용하지 않는 문제가 있었는데, 이를 해결하기 위해 강인 손실 함수를 이용하여 신뢰도가 낮은 데이터 또한 사용하는 연구도 진행되었다. 한편, 레이블이 매우 적은 상황에서는 모델이 예측한 레이블은 신뢰도가 높더라도 부정확하다는 문제가 있다. 이 논문에서는 레이블이 매우 적은 상황에서 원 핫 벡터가 아닌 모델이 예측한 확률을 레이블로 사용함으로써 분류 모델의 성능을 높일 수 있는 방법을 제시한다. 또한 이미지 분류 문제에 대한 실험을 통하여 제시된 방법이 분류 모델의 성능을 향상시킴을 보여준다.

목차

요약
Abstract
1. 서론
2. 관련 연구
3. 문제 정의
4. 배경 이론
5. 강인 손실 함수를 사용한 FixMatch
6. 제안하는 방법
7. 실험
8. 결론
References

참고문헌 (11)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0