메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Rahul Hooda (Punjab Engineering College) Ajay Mittal (Panjab University) Sanjeev Sofat (Punjab Engineering College)
저널정보
대한의용생체공학회 Biomedical Engineering Letters (BMEL) Biomedical Engineering Letters (BMEL) Vol.9 No.1
발행연도
2019.1
수록면
109 - 117 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Precisely segmented lung fields restrict the region-of-interest from which radiological patterns are searched, and is thus anindispensable prerequisite step in any chest radiographic CADx system. Recently, a number of deep learning-basedapproaches have been proposed to implement this step. However, deep learning has its own limitations and cannot be usedin resource-constrained settings. Medical systems generally have limited RAM, computational power, storage, and noGPUs. They are thus not always suited for running deep learning-based models. Shallow learning-based models withappropriately selected features give comparable performance but with modest resources. The present paper thus proposes ashallow learning-based method that makes use of 40 radiomic features to segment lung fields from chest radiographs. Adistance regularized level set evolution (DRLSE) method along with other post-processing steps are used to refine itsoutput. The proposed method is trained and tested using publicly available JSRT dataset. The testing results indicate thatthe performance of the proposed method is comparable to the state-of-the-art deep learning-based lung field segmentation(LFS) methods and better than other LFS methods.

목차

등록된 정보가 없습니다.

참고문헌 (21)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0