메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Md. Rashed-Al-Mahfuz (University of Rajshahi) Mohammad Ali Moni (The University of New South Wales) Pietro Lio’ (The University of Cambridge) Sheikh Mohammed Shariful Islam (Deakin University) Shlomo Berkovsky (Macquarie University) Matloob Khushi (The University of Sydney) Julian M. W. Quinn (Garvan Institute of Medical Research)
저널정보
대한의용생체공학회 Biomedical Engineering Letters (BMEL) Biomedical Engineering Letters (BMEL) Vol.11 No.2
발행연도
2021.1
수록면
147 - 162 (16page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Medical practitioners need to understand the critical features of ECG beats to diagnose and identify cardiovascular conditionsaccurately. This would be greatly facilitated by identifying the signifi cant features of frequency components in temporalECG wave-forms using computational methods. In this study, we have proposed a novel ECG beat classifi er based ona customized VGG16-based Convolution Neural Network (CNN) that uses the time-frequency representation of temporalECG, and a method to identify the contribution of interpretable ECG frequencies when classifying based on the SHapleyAdditive exPlanations (SHAP) values. We applied our model to the MIT-BIH arrhythmia dataset to classify the ECG beatsand to characterise of the beats frequencies. This model was evaluated with two advanced time-frequency analysis methods. Our results indicated that for 2-4 classes our proposed model achieves a classifi cation accuracy of 100% and for 5 classes itachieves a classifi cation accuracy of 99.90%. We have also tested the proposed model using premature ventricular contractionbeats from the American Heart Association (AHA) database and normal beats from Lobachevsky University Electrocardiographydatabase (LUDB) and obtained a classifi cation accuracy of 99.91% for the 5-classes case. In addition, SHAP valueincreased the interpretability of the ECG frequency features. Thus, this model could be applicable to the automation of thecardiovascular diagnosis system and could be used by clinicians.

목차

등록된 정보가 없습니다.

참고문헌 (54)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0