메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Sun Miao (Faculty of Engineering China University of Geosciences (Wuhan) Wuhan China) Wu Li (Faculty of Engineering China University of Geosciences (Wuhan) Wuhan China) Li Chunjun (Changjiang Chongqing Waterway Engineering Bureau Chongqing China) Yuan Qing (CCCC Second Harbour Engineering Co Ltd Wuhan China) Zhou Yuchun (Faculty of Engineering China University of Geosciences (Wuhan) Wuhan China) Ouyang Xu (Powerchina Kunming Engineering Corporation Limited Kunming China)
저널정보
한국자원공학회 Geosystem Engineering Geosystem Engineering Vol.23 No.4
발행연도
2020.1
수록면
234 - 242 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
In this paper, a two-stage denoising algorithm is proposed. Complementary ensemble empirical mode decomposition based on permutation entropy (CEEMD-PE) is carried out for the noisy monitoring signal in the first stage. Several denoising models are established according to the intrinsic mode function obtained by CEEMD-PE. An objective function considers both the smoothness of the denoising model and the similarity between the denoising model and the noisy monitoring signal is established, and the second stage denoising is realized by solving the objective function. The denoising model corresponding to the optimal solution of the objective function is the smooth denoising model. In order to verify the correctness of the two-stage denoising algorithm, the mixed simulation signal with noise is denoised, and based on the definition of signal-to-noise ratio, the effect of two-stage denoising is calculated. Finally, the algorithm is applied to the actual blasting seismic signal denoising processing. It is found that the proposed algorithm can not only reduce the noise interference but also retain the real part of the original signal while filtering the noise.

목차

등록된 정보가 없습니다.

참고문헌 (18)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0