메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Mai-Suong T. Nguyen (Sejong University) Duc Kien Thai (Sejong University) Seung-Eock Kim (Sejong University)
저널정보
국제구조공학회 Steel and Composite Structures, An International Journal Steel and Composite Structures, An International Journal Vol.35 No.3
발행연도
2020.1
수록면
415 - 437 (23page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Circular concrete filled steel tube (CFST) columns have an advantage over all other sections when they are used in compression members. This paper proposes a new approach for deriving a new empirical equation to predict the axial compressive capacity of circular CFST columns using the Artificial Neural Network (ANN). The developed ANN model uses 5 input parameters that include the diameter of circular steel tube, the length of the column, the thickness of steel tube, the steel yield strength and the compressive strength of concrete. The only output parameter is the axial compressive capacity. Training and testing the developed ANN model was carried out using 219 available sets of data collected from the experimental results in the literature. An empirical equation is then proposed as an important result of this study, which is practically used to predict the axial compressive capacity of a circular CFST column. To evaluate the performance of the developed ANN model and the proposed equation, the predicted results are compared with those of the empirical equations stated in the current design codes and other models. It is shown that the proposed equation can predict the axial compressive capacity of circular CFST columns more accurately than other methods. This is confirmed by the high accuracy of a large number of existing test results. Finally, the parametric study result is analyzed for the proposed ANN equation to consider the effect of the input parameters on axial compressive strength.

목차

등록된 정보가 없습니다.

참고문헌 (52)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0