메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Ke Ke (Chongqing University) Michael CH Yam (The Hong Kong Polytechnic University) Xuhong Zhou (Chongqing University) Fuming Wang (Chongqing University) Fei Xu (Chongqing University)
저널정보
국제구조공학회 Steel and Composite Structures, An International Journal Steel and Composite Structures, An International Journal Vol.40 No.3
발행연도
2021.1
수록면
369 - 387 (19page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
This investigation contributes to quantification of the inelastic seismic demands for high strength steel moment resisting frames equipped with energy dissipation bays (HSSF-EDBs) subjected to seismic sequences composed of repeated near-field ground motions. The emphasis is placed on the energy factor demand. A statistical examination of a database with more than eighty million energy factor demands of single-degree-of-freedom (SDOF) oscillators representing HSSF-EDBs responding in different yielding stages is conducted. The research findings show that in the damage-control stage, the energy factor which quantifies the peak seismic demand of a HSSF-EDB structure is insensitive to the repeated near-field earthquake motions. In contrast, a remarkable elevation of the energy factor is observed when oscillators characterising HSSF-EDBs progress into the ultimate stage. In addition, an increasing post-yielding stiffness ratio of the nonlinear force-displacement response in the damage-control stage may produce a detrimental effect on HSSF-EDBs progressing into the ultimate stage under repeated near-field earthquakes due to the corresponding evident increase of seismic demands. A nonlinear regression model quantifying the mean energy factor demand of the system under repeated near-field earthquake motions is proposed to facilitate performance-based seismic design of HSSF-EDBs.

목차

등록된 정보가 없습니다.

참고문헌 (67)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0