메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Scott J. Menegon (Swinburne University of Technology) John L. Wilson (Swinburne University of Technology) Nelson T.K. Lam (University of Melbourne) Emad F. Gad (Swinburne University of Technology)
저널정보
한국계산역학회 Computers and Concrete, An International Journal Computers and Concrete, An International Journal Vol.25 No.4
발행연도
2020.1
수록면
327 - 341 (15page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Advanced forms of structural design (e.g., displacement-based methods) require knowledge of the non-linear forcedisplacement behavior of both the overall building and individual lateral load resisting elements, i.e., walls or building cores. Similarly, understanding the non-linear behaviour of the elements in a structure can also allow for a less conservative structural response to be calculated by better understanding the cracked (i.e., effective) properties of the various RC elements. Calculating the non-linear response of an RC section typically involves using ‘black box’ analysis packages, wherein the user may not be in complete control nor be aware of all the intricate settings and/or decisions behind the scenes. This paper introduces a userfriendly and transparent analysis program for predicting the back-bone force displacement behavior of slender (i.e., flexure controlled) RC walls, building cores or columns. The program has been validated and benchmarked theoretically against both commonly available and widely used analysis packages and experimentally against a database of 16 large-scale RC wall test specimens. The program, which is called WHAM, is written using Microsoft Excel spreadsheets to promote transparency and allow users to further develop or modify to suit individual requirements. The program is available free-of-charge and is intended to be used as an educational tool for structural designers, researchers or students.

목차

등록된 정보가 없습니다.

참고문헌 (35)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0